
Package ‘bsseq’
February 18, 2026

Version 1.46.0

Encoding UTF-8

Title Analyze, manage and store whole-genome methylation data

Description A collection of tools for analyzing and visualizing whole-genome
methylation data from sequencing. This includes whole-genome bisulfite
sequencing and Oxford nanopore data.

Depends R (>= 4.0), methods, BiocGenerics, GenomicRanges (>= 1.41.5),
SummarizedExperiment (>= 1.19.5)

Imports IRanges (>= 2.23.9), Seqinfo, scales, stats, parallel, tools,
graphics, Biobase, locfit, gtools, data.table (>= 1.11.8),
S4Vectors (>= 0.27.12), R.utils (>= 2.0.0), DelayedMatrixStats
(>= 1.5.2), permute, limma, DelayedArray (>= 0.15.16), Rcpp,
BiocParallel, BSgenome, Biostrings, utils, HDF5Array (>=
1.19.11), rhdf5, beachmat (>= 2.23.2)

Suggests testthat, bsseqData, BiocStyle, rmarkdown, knitr, Matrix,
doParallel, rtracklayer, BSgenome.Hsapiens.UCSC.hg38,
batchtools

Collate utils.R hasGRanges.R BSseq-class.R BSseqTstat_class.R
BSseq_utils.R combine.R read.bismark.R read.bedMethyl.R
read.modbam2bed.R read.modkit.R BSmooth.R BSmooth.tstat.R
dmrFinder.R gof_stats.R plotting.R fisher.R permutations.R
BSmooth.fstat.R BSseqStat_class.R getStats.R hdf5_utils.R
DelayedArray_utils.R collapseBSseq.R FWIRanges-class.R
FWGRanges-class.R findLoci.R Likelihood_functions.R

License Artistic-2.0

VignetteBuilder knitr

URL https://github.com/kasperdanielhansen/bsseq

BugReports https://github.com/kasperdanielhansen/bsseq/issues

biocViews DNAMethylation

LinkingTo Rcpp, beachmat, assorthead (>= 1.1.4)

SystemRequirements C++17

NeedsCompilation yes

RoxygenNote 7.1.0

git_url https://git.bioconductor.org/packages/bsseq

1

https://github.com/kasperdanielhansen/bsseq
https://github.com/kasperdanielhansen/bsseq/issues

2 Contents

git_branch RELEASE_3_22

git_last_commit ea21812

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-02-18

Author Kasper Daniel Hansen [aut, cre] (ORCID:
<https://orcid.org/0000-0003-0086-0687>),

Peter Hickey [aut] (ORCID: <https://orcid.org/0000-0002-8153-6258>),
Hervé Pagès [ctb],
Aaron Lun [ctb]

Maintainer Kasper Daniel Hansen <kasperdanielhansen@gmail.com>

Contents

BS.chr22 . 3
BSmooth . 4
BSmooth.fstat . 7
BSmooth.tstat . 8
BSseq . 10
BSseq-class . 12
bsseq-deprecated . 14
BSseqStat-class . 15
BSseqTstat-class . 16
computeStat . 17
data.frame2GRanges . 19
dmrFinder . 19
estimateErrorRate . 21
findLoci . 22
fisherTests . 24
FWGRanges-class . 25
getCoverage . 25
getCpGMatrix . 27
getCpGs . 28
getMaxLikelihoodMatrix . 29
getMeth . 31
getStats . 32
GoodnessOfFit . 33
hasGRanges-class . 35
Internals . 36
plotRegion . 36
read.bedMethyl . 38
read.bismark . 40
read.modbam2bed . 45
read.modkit . 46
smoothSds . 47

Index 50

https://orcid.org/0000-0003-0086-0687
https://orcid.org/0000-0002-8153-6258

BS.chr22 3

BS.chr22 Whole-genome bisulfite sequencing for chromosome 22 from Lister et
al.

Description

This dataset represents chromosome 22 from the IMR90 cell line sequenced in Lister et al. Only
CpG methylation are included (there were very few non-CpG loci). The two samples are two
different extractions from the same cell line (ie. technical replicates), and are pooled in the analysis
in the original paper.

Usage

data(BS.chr22)

Format

An object of class BSseq.

Details

All coordinates are in hg18.

Source

Obtained from http://neomorph.salk.edu/human_methylome/data.html specifically the files
mc_imr90_r1.tar.gz and mc_imr90_r2.tar.gz. A script which downloads these files and con-
structs the BS.chr22 object may be found in ‘inst/scripts/get_BS.chr22.R’, see the example.

References

R Lister et al. Human DNA methylomes at base resolution show widespread epigenomic differences.
Nature (2009) 462, 315-322.

Examples

data(BS.chr22)
BS.chr22

script <- system.file("scripts", "get_BS.chr22.R", package = "bsseq")
script
readLines(script)

http://neomorph.salk.edu/human_methylome/data.html
mc_imr90_r1.tar.gz
mc_imr90_r2.tar.gz

4 BSmooth

BSmooth BSmooth, smoothing bisulfite sequence data

Description

This implements the BSmooth algorithm for estimating methylation levels from bisulfite sequencing
data.

Usage

BSmooth(BSseq,
ns = 70,
h = 1000,
maxGap = 10^8,
keep.se = FALSE,
BPPARAM = bpparam(),
chunkdim = NULL,
level = NULL,
verbose = getOption("verbose"))

Arguments

BSseq An object of class BSseq.

ns The minimum number of methylation loci in a smoothing window.

h The minimum smoothing window, in bases.

maxGap The maximum gap between two methylation loci, before the smoothing is bro-
ken across the gap. The default smoothes each chromosome separately.

keep.se Should the estimated standard errors from the smoothing algorithm be kept. This
will make the return object roughly 30 percent bigger and is currently not be
used for anything in bsseq.

BPPARAM An optional BiocParallelParam instance determining the parallel back-end
to be used during evaluation. Currently supported are SerialParam (Unix,
Mac, Windows), MulticoreParam (Unix and Mac), SnowParam (Unix, Mac,
and Windows, limited to single-machine clusters), and BatchtoolsParam (Unix,
Mac, Windows, only with the in-memory realization backend). See sections
’Parallelization and progress monitoring’ and ’Realization backends’ for further
details.

chunkdim Only applicable if BACKEND == "HDF5Array". The dimensions of the chunks to
use for writing the data to disk. By default, getHDF5DumpChunkDim() using the
dimensions of the returned BSseq object will be used. See ?{getHDF5DumpChunkDim}
for more information.

level Only applicable if BACKEND == "HDF5Array". The compression level to use for
writing the data to disk. By default, getHDF5DumpCompressionLevel() will be
used. See ?getHDF5DumpCompressionLevel for more information.

verbose A logical(1) indicating whether progress messages should be printed (default
TRUE).

BSmooth 5

Details

ns and h are passed to the locfit function. The bandwidth used is the maximum (in genomic
distance) of the h and a width big enough to contain ns number of methylation loci.

Value

An object of class BSseq, containing coefficients used to fit smoothed methylation values and op-
tionally standard errors for these.

Realization backends

The BSmooth() function creates a new assay to store the coefficients used to construct the smoothed
methylation estimates ((coef). An additional assay is also created if keep.se == TRUE (se.coef).

The choice of realization backend controls whether these assay(s) are stored in-memory as an ordi-
nary matrix or on-disk as a HDF5Array, for example.

The choice of realization backend is controlled by the BACKEND argument, which defaults to the
current value of DelayedArray::getAutoRealizationBackend().

BSmooth supports the following realization backends:

• NULL (in-memory): This stores each new assay in-memory using an ordinary matrix.

• HDF5Array (on-disk): This stores each new assay on-disk in a HDF5 file using an HDF5Matrix
from HDF5Array.

Please note that certain combinations of realization backend and parallelization backend are cur-
rently not supported. For example, the HDF5Array realization backend is currently only compatible
when used with a single-machine parallelization backend (i.e. it is not compatible with a SnowParam
that specifies an ad hoc cluster of multiple machines). BSmooth() will issue an error when given
such incompatible realization and parallelization backends. Furthermore, to avoid memory usage
blow-ups, BSmooth() will issue an error if an in-memory realization backend is used when smooth-
ing a disk-backed BSseq object.

Additional arguments related to the realization backend can be passed via the ... argument. These
arguments must be named and are passed to the relevant RealizationSink constructor. For exam-
ple, the ... argument can be used to specify the path to the HDF5 file to be used by BSmooth().
Please see the examples at the bottom of the page.

Parallelization and progress monitoring

BSmooth() now uses the BiocParallel package to implement parallelization. This brings some
notable improvements:

• Smoothed results can now be written directly to an on-disk realization backend by the worker.
This dramatically reduces memory usage compared to previous versions of bsseq that required
all results be retained in-memory.

• Parallelization is now supported on Windows through the use of a SnowParam object as the
value of BPPARAM.

• Detailed and extensive job logging facilities.

All parallelization options are controlled via the BPPARAM argument. In general, we recommend that
users combine multicore (single-machine) parallelization with an on-disk realization backend (see
section, ’Realization backend’). For Unix and Mac users, this means using a MulticoreParam. For
Windows users, this means using a single-machine SnowParam. Please consult the BiocParallel
documentation to take full advantage of the more advanced features.

6 BSmooth

Deprecated arguments: parallelBy, mc.cores, and mc.preschedule are deprecated and will
be removed in subsequent releases of bsseq. These arguments were necessary when BSmooth()
used the parallel package to implement parallelization, but this functionality is superseded by the
aforementioned use of BiocParallel. We recommend that users who previously relied on these
arguments switch to BPPARAM = MulticoreParam(workers = mc.cores, progressbar = TRUE).

Progress monitoring: A useful feature of BiocParallel are progress bars to monitor the status
of long-running jobs, such as BSmooth(). Progress bars are controlled via the progressbar
argument in the BiocParallelParam constructor. Progress bars replace the use of the deprecated
verbose argument to print out information on the status of BSmooth().
BiocParallel also supports extensive and detailed logging facilities. Please consult the BiocPar-
allel documentation to take full advantage these advanced features.

Author(s)

Method and original implementation by Kasper Daniel Hansen <khansen@jhsph.edu>. Updated
implementation to support disk-backed BSseq objects and more general parallelization by Peter
Francis Hickey.

References

KD Hansen, B Langmead, and RA Irizarry. BSmooth: from whole genome bisulfite sequencing
reads to differentially methylated regions. Genome Biology (2012) 13:R83. doi:10.1186/gb-2012-
13-10-r83.

See Also

locfit in the locfit package, as well as BSseq.

Examples

Not run:
Run BSmooth() on a matrix-backed BSseq object using an in-memory realization
backend with serial evaluation.
data(BS.chr22)
This is a matrix-backed BSseq object.
sapply(assays(BS.chr22, withDimnames = FALSE), class)
BS.fit <- BSmooth(BS.chr22, BPPARAM = SerialParam(progressbar = TRUE))
The new 'coef' assay is an ordinary matrix.
sapply(assays(BS.fit, withDimnames = FALSE), class)
BS.fit

Run BSmooth() on a disk-backed BSseq object using the HDF5Array realization
backend (with data written to the file 'BSmooth_example.h5') with
multi-core parallel evaluation.
BS.chr22 <- realize(BS.chr22, "HDF5Array")
This is a disk-backed BSseq object.
sapply(assays(BS.chr22, withDimnames = FALSE), class)
BS.fit <- BSmooth(BS.chr22,

BPPARAM = MulticoreParam(workers = 2, progressbar = TRUE),
BACKEND = "HDF5Array",
filepath = "BSmooth_example.h5")

The new 'coef' assay is an HDF5Matrix.
sapply(assays(BS.fit, withDimnames = FALSE), class)
BS.fit

http://www.dx.doi.org/10.1186/gb-2012-13-10-r83
http://www.dx.doi.org/10.1186/gb-2012-13-10-r83

BSmooth.fstat 7

The new 'coef' assay is in the HDF5 file 'BSmooth_example.h5' (in the
current working directory).
sapply(assays(BS.fit, withDimnames = FALSE), path)

End(Not run)

BSmooth.fstat Compute F-statistics based on smoothed whole-genome bisulfite se-
quencing data.

Description

Compute F-statistics based on smoothed whole-genome bisulfite sequencing data.

Usage

BSmooth.fstat(BSseq, design, contrasts, verbose = TRUE)

Arguments

BSseq An object of class BSseq.

design The design matrix of the bisulfite-sequencing experiment, with rows correspond-
ing to arrays and columns to coefficients to be estimated.

contrasts Numeric matrix with rows corresponding to columns in design and columns
containing contrasts. May be a vector if there is only one contrast.

verbose Should the function be verbose?

Details

TODO

Value

An object of class BSseqStat.

Author(s)

Kasper Daniel Hansen <khansen@jhsph.edu>

See Also

BSmooth for the input object and BSseq for its class. BSseqStat describes the return class. This
function is likely to be followed by the use of smoothSds, computeStat, and dmrFinder.

8 BSmooth.tstat

Examples

if(require(bsseqData)) {
limma required for makeContrasts()
library(limma)
data(keepLoci.ex)
data(BS.cancer.ex.fit)
BS.cancer.ex.fit <- updateObject(BS.cancer.ex.fit)
Remember to subset the BSseq object, see vignette for explanation
TODO: Kind of a forced example
design <- model.matrix(~0 + BS.cancer.ex.fit$Type)
colnames(design) <- gsub("BS\\.cancer\\.ex\\.fit\\$Type", "",

colnames(design))
contrasts <- makeContrasts(

cancer_vs_normal = cancer - normal,
levels = design

)
BS.stat <- BSmooth.fstat(BS.cancer.ex.fit[keepLoci.ex,],

design,
contrasts)

BS.stat

#---
An example using a HDF5Array-backed BSseq object
#
library(HDF5Array)
See ?SummarizedExperiment::saveHDF5SummarizedExperiment for details
hdf5_BS.cancer.ex.fit <- saveHDF5SummarizedExperiment(

x = BS.cancer.ex.fit[keepLoci.ex,],
dir = tempfile())

hdf5_BS.stat <- BSmooth.fstat(hdf5_BS.cancer.ex.fit,
design,
contrasts)

hdf5_BS.stat
}

BSmooth.tstat Compute t-statistics based on smoothed whole-genome bisulfite se-
quencing data.

Description

Compute t-statistics based on smoothed whole-genome bisulfite sequencing data.

Usage

BSmooth.tstat(BSseq, group1, group2,
estimate.var = c("same", "paired", "group2"), local.correct = TRUE,
maxGap = NULL, qSd = 0.75, k = 21, mc.cores = 1, verbose = TRUE)

Arguments

BSseq An object of class BSseq.

BSmooth.tstat 9

group1 A vector of sample names or indexes for the ‘treatment’ group.

group2 A vector of sample names or indexes for the ‘control’ group.

estimate.var How is the variance estimated, see details.

local.correct A logical; should local correction be used, see details.

maxGap A scalar greater than 0, see details.

qSd A scalar between 0 and 1, see details.

k A positive scalar, see details.

mc.cores The number of cores used. Note that setting mc.cores to a value greater than 1
is not supported on MS Windows, see the help page for mclapply.

verbose Should the function be verbose?

Details

T-statistics are formed as the difference in means between group 1 and group 2 divided by an
estimate of the standard deviation, assuming that the variance in the two groups are the same (same),
that we have paired samples (paired) or only estimate the variance based on group 2 (group2).
The standard deviation estimates are then smoothed (using a running mean with a width of k)
and thresholded (using qSd which sets the minimum standard deviation to be the qSd-quantile).
Optionally, the t-statistics are corrected for low-frequency patterns.

It is sometimes useful to use local.correct even if no large scale changes in methylation have
been found; it makes the marginal distribution of the t-statistics more symmetric.

Additional details in the reference.

Value

An object of class BSseqTstat.

Author(s)

Kasper Daniel Hansen <khansen@jhsph.edu>

References

KD Hansen, B Langmead, and RA Irizarry. BSmooth: from whole genome bisulfite sequencing
reads to differentially methylated regions. Genome Biology (2012) 13:R83. doi:10.1186/gb-2012-
13-10-r83.

See Also

BSmooth for the input object and BSseq for its class. BSseqTstat describes the return class. This
function is likely to be followed by the use of dmrFinder. And finally, see the package vignette(s)
for more information on how to use it.

Examples

if(require(bsseqData)) {
data(keepLoci.ex)
data(BS.cancer.ex.fit)
BS.cancer.ex.fit <- updateObject(BS.cancer.ex.fit)
Remember to subset the BSseq object, see vignette for explanation
BS.tstat <- BSmooth.tstat(BS.cancer.ex.fit[keepLoci.ex,],

http://www.dx.doi.org/10.1186/gb-2012-13-10-r83
http://www.dx.doi.org/10.1186/gb-2012-13-10-r83

10 BSseq

group1 = c("C1", "C2", "C3"),
group2 = c("N1", "N2", "N3"),
estimate.var = "group2")

BS.tstat
This object is also stored as BS.cancer.ex.tstat in the
bsseqData package

#---
An example using a HDF5Array-backed BSseq object
#

library(HDF5Array)
See ?SummarizedExperiment::saveHDF5SummarizedExperiment for details
hdf5_BS.cancer.ex.fit <- saveHDF5SummarizedExperiment(

x = BS.cancer.ex.fit[keepLoci.ex,],
dir = tempfile())

hdf5_BS.tstat <- BSmooth.tstat(hdf5_BS.cancer.ex.fit,
group1 = c("C1", "C2", "C3"),
group2 = c("N1", "N2", "N3"),
estimate.var = "group2")

}

BSseq The constructor function for BSseq objects.

Description

The constructor function for BSseq objects.

Usage

BSseq(M = NULL, Cov = NULL, Filtered = NULL, coef = NULL, se.coef = NULL,
trans = NULL, parameters = NULL, pData = NULL, gr = NULL,
pos = NULL, chr = NULL, sampleNames = NULL, rmZeroCov = FALSE)

Arguments

M A matrix-like object of methylation evidence (see ’Details’ below).
Cov A matrix-like object of coverage (see ’Details’ below)).
Filtered A matrix-like object of ambiguous modification bases obtained from modbam2bed.
coef A matrix-like object of smoothing estimates (see ’Details’ below).
se.coef A matrix-like object of smoothing standard errors (see ’Details’ below).
trans A smoothing transformation.
parameters A list of smoothing parameters.
pData An data.frame or DataFrame.
sampleNames A vector of sample names.
gr An object of type GRanges.
pos A vector of locations.
chr A vector of chromosomes.
rmZeroCov Should genomic locations with zero coverage in all samples be removed.

BSseq 11

Details

The ’M’, ’Cov’, ’coef’, and ’se.coef’ matrix-like objects will be coerced to DelayedMatrix objects;
see DelayedMatrix in the DelayedArray package for the full list of supported matrix-like objects.
We recommend using matrix objects for in-memory storage of data and HDF5Matrix for on-disk
storage of data.

Genomic locations are specified either through gr or through chr and pos but not both. There
should be the same number of genomic locations as there are rows in the M and Cov matrix.

The argument rmZeroCov may be useful in order to reduce the size of the return object be removing
methylation loci with zero coverage.

In case one or more methylation loci appears multiple times, the M and Cov matrices are summed
over rows linked to the same methylation loci. See the example below.

Users should never have to specify coef, se.coef, trans, and parameters, this is for internal use
(they are added by BSmooth).

phenoData is a way to specify pheno data (as known from the ExpressionSet and eSet classes), at
a minimum sampleNames should be given (if they are not present, the function uses col.names(M)).

Value

An object of class BSseq.

Author(s)

Kasper Daniel Hansen <khansen@jhsph.edu>

See Also

BSseq

Examples

M <- matrix(0:8, 3, 3)
Cov <- matrix(1:9, 3, 3)
BS1 <- BSseq(chr = c("chr1", "chr2", "chr1"), pos = c(1,2,3),

M = M, Cov = Cov, sampleNames = c("A","B", "C"))
BS1
BS2 <- BSseq(chr = c("chr1", "chr1", "chr1"), pos = c(1,1,1),

M = M, Cov = Cov, sampleNames = c("A","B", "C"))
BS2

#---
An example using a HDF5Array-backed BSseq object
#

library(HDF5Array)
hdf5_M <- realize(M, "HDF5Array")
hdf5_Cov <- realize(Cov, "HDF5Array")
hdf5_BS1 <- BSseq(chr = c("chr1", "chr2", "chr1"),

pos = c(1, 2, 3),
M = hdf5_M,
Cov = hdf5_Cov,
sampleNames = c("A", "B", "C"))

hdf5_BS1
hdf5_BS2 <- BSseq(chr = c("chr1", "chr1", "chr1"),

12 BSseq-class

pos = c(1, 1, 1),
M = hdf5_M,
Cov = hdf5_Cov,
sampleNames = c("A", "B", "C"))

hdf5_BS2

BSseq-class Class BSseq

Description

A class for representing whole-genome or capture bisulfite sequencing data.

Objects from the Class

An object from the class links together several pieces of information. (1) genomic locations stored
as a GRanges object, a location by samples matrix of M values, a location by samples matrix of Cov
(coverage) values, a location by samples matrix of Filtered (ambiguous modification status) values,
and phenodata information.In addition, there are slots for representing smoothed data. This class is
an extension of RangedSummarizedExperiment from the SummarizedExperiment package.

Slots

trans: Object of class function. This function transforms the coef slot from the scale the smooth-
ing was done to the 0-1 methylation scale.

parameters: Object of class list. A list of parameters representing for example how the data was
smoothed.

Methods

[signature(x = "BSseq"): Subsetting by location (using integer indices) or sample (using inte-
gers or sample names).

length Unlike for RangedSummarizedExperiment, length() is the number of methylation loci
(equal to length(granges(x))).

sampleNames,sampleNames<- Sample names and its replacement function for the object. This is
an alias for colnames.

pData,pData<- Obtain and replace the pData slot of the phenoData slot. This is an alias for
colData.

show The show method.

combine This function combines two BSSeq objects. The genomic locations of the new object is
the union of the genomic locations of the individual objects. In addition, the methylation data
matrices are placed next to each other (as appropriate wrt. the new genomic locations) and
zeros are entered into the matrices as needed.

BSseq-class 13

Utilities

This class extends RangedSummarizedExperiment from the SummarizedExperiment package and
therefore inherits a number of useful GRanges methods that operate on the rowRanges slot, used for
accessing and setting the genomic locations and also do subsetByOverlaps.

There are a number of almost methods-like functions for operating on objects of class BSseq, in-
cluding getBSseq, collapseBSseq, and orderBSseq. They are detailed below.

collapseBSseq(BSseq, columns) is used to collapse an object of class BSseq. By collapsing we
simply mean that certain columns (samples) are merge together by summing up the methyla-
tion evidence and coverage. This is a useful function if you start by reading in a dataset based
on say flowcells and you (after QC) want to simply add a number of flowcells into one sam-
ple. The argument columns specify which samples are to be merged, in the following way:
it is a character vector of new sample names, and the names of the column vector indicates
which samples in the BSseq object are to be collapsed. If columns have the same length as
the number of rows of BSseq (and has no names) it is assumed that the ordering corresponds
to the sample ordering in BSseq.

orderBSseq(BSseq, seqOrder = NULL) simply orders an object of class BSseq according to (in-
creasing) genomic locations. The seqOrder vector is a character vector of seqnames(BSseq)
describing the order of the chromosomes. This is useful for ordering chr1 before chr10.

chrSelectBSseq(BSseq, seqnames = NULL, order = FALSE) subsets and optionally reorders an
object of class BSseq. The seqnames vector is a character vector of seqnames(BSseq) de-
scribing which chromosomes should be retained. If order is TRUE, the chromosomes are also
re-ordered using orderBSseq.

getBSseq(BSseq, type = c("Cov", "M", "gr", "coef", "se.coef", "trans", "parameters"))
is a general accessor: is used to obtain a specific slot of an object of class BSseq. It is primarily
intended for internal use in the package, for users we recommend granges to get the genomic
locations, getCoverage to get the coverage slots and getMeth to get the smoothed values (if
they exist).

hasBeenSmoothed(BSseq) This function returns a logical depending on whether or not the BSseq
object has been smoothed using BSmooth.

combineList(list, BACKEND = NULL) This function function is a faster way of using combine on
multiple BSseq objects. The input is a list, with each component an object of class BSseq.
The (slower) alternative is to use Reduce(combine, list).
The BACKEND argument determines which backend should be used for the ’M’ and ’Cov’ ma-
trices and, if present, the ’coef’ and ’se.coef’ matrices (the latter two can only be combined
if all objects have the same rowRanges). The default, BACKEND = NULL, corresponds to us-
ing matrix objects. See setAutoRealizationBackend (in the DelayedArray package) for
alternative backends.

strandCollapse(BSseq, shift = TRUE) This function operates on a BSseq objects which has
stranded loci (i.e. loci where the strand is one of ‘+’ or ‘-’). It will collapse the methyla-
tion and coverage information across the two strands, unstranding the loci in the process and
potentially re-ordering them.
The argument shift indicates whether the positions for the loci on the reverse strand should
be shifted one (i.e. the positions for these loci are the positions of the ‘G’ in the ‘CpG’; this is
the case for Bismark output for example).

Coercion

Package versions 1.5.2 and 1.11.1 introduced a new version of representing ‘BSseq’ objects. You
can update old serialized (saved) objects by invoking x <- updateObject(x).

14 bsseq-deprecated

Assays

This class overrides the default implementation of assays to make it faster. Per default, no names
are added to the returned data matrices.

Assay names can conveniently be obtained by the function assayNames(x)

Author(s)

Kasper Daniel Hansen <khansen@jhsph.edu>

See Also

The package vignette. BSseq for the constructor function. RangedSummarizedExperiment (in
the SummarizedExperiment package) for the underlying class. getBSseq, getCoverage, and
getMeth for accessing the data stored in the object and finally BSmooth for smoothing the bisulfite
sequence data.

Examples

M <- matrix(1:9, 3,3)
colnames(M) <- c("A1", "A2", "A3")
BStest <- BSseq(pos = 1:3, chr = c("chr1", "chr2", "chr1"), M = M, Cov = M + 2)
chrSelectBSseq(BStest, seqnames = "chr1", order = TRUE)
collapseBSseq(BStest, group = c("A", "A", "B"))

#---
An example using a HDF5-backed BSseq object
#
hdf5_BStest <- realize(BStest, "HDF5Array")
chrSelectBSseq(hdf5_BStest, seqnames = "chr1", order = TRUE)
collapseBSseq(

BSseq = hdf5_BStest,
group = c("A", "A", "B"),
BACKEND = "HDF5Array",
type = "integer")

bsseq-deprecated Deprecated functions in package ‘bsseq’

Description

These functions are provided for compatibility with older versions of ‘bsseq’ only, and will be
defunct at the next release.

Details

The following functions are deprecated and will be made defunct; use the replacement indicated
below:

• read.modbam2bed: read.bedMethyl

• read.modkit: read.bedMethyl

BSseqStat-class 15

BSseqStat-class Class BSseqStat

Description

A class for representing statistics for smoothed whole-genome bisulfite sequencing data.

Usage

BSseqStat(gr = NULL, stats = NULL, parameters = NULL)

Arguments

gr The genomic locations as an object of class GRanges.

stats The statistics, as a list of matrix-like objects (see ’Details’ below).

parameters A list of parameters.

Details

The matrix-like elements of the list in the ’stats’ slot will be coerced to DelayedMatrix objects;
see DelayedMatrix in the DelayedArray package for the full list of supported matrix-like objects.
We recommend using matrix objects for in-memory storage of data and HDF5Matrix for on-disk
storage of data.

Objects from the Class

Objects can be created by calls of the form BSseqStat(...). However, usually objects are returned
by BSmooth.fstat(...) and not constructed by the user.

Slots

stats: This is a list of DelayedMatrix objects with list elements representing various statistics for
methylation loci along the genome.

parameters: Object of class list. A list of parameters representing how the statistics were com-
puted.

gr: Object of class GRanges giving genomic locations.

Extends

Class hasGRanges, directly.

Methods

[The subsetting operator; one may only subset in one dimension, corresponding to methylation
loci.

show The show method.

Utilities

This class extends hasGRanges and therefore inherits a number of useful GRanges methods that op-
erate on the gr slot, used for accessing and setting the genomic locations and also do subsetByOverlaps.

16 BSseqTstat-class

Coercion

Package version 1.11.1 introduced a new version of representing ‘BSseqStat’ objects. You can
update old serialized (saved) objects by invoking x <- updateObject(x).

Author(s)

Kasper Daniel Hansen <khansen@jhsph.edu>

See Also

hasGRanges for accessing the genomic locations. BSmooth.fstat for a function that returns objects
of class BSseqStat, and smoothSds, computeStat and dmrFinder for functions that operate based
on these statistics. Also see the more specialised BSseqTstat.

BSseqTstat-class Class BSseqTstat

Description

A class for representing t-statistics for smoothed whole-genome bisulfite sequencing data.

Usage

BSseqTstat(gr = NULL, stats = NULL, parameters = NULL)

Arguments

gr The genomic locations as an object of class GRanges.

stats The statistics, as a matrix-like object (see ’Details’ below).

parameters A list of parameters.

Details

The ’stats’ matrix-like object will be coerced to a DelayedMatrix objects; see DelayedMatrix in
the DelayedArray package for the full list of supported matrix-like objects. We recommend using
matrix objects for in-memory storage of data and HDF5Matrix for on-disk storage of data.

Objects from the Class

Objects can be created by calls of the form BSseqTstat(...). However, usually objects are re-
turned by BSmooth.tstat(...) and not constructed by the user..

Slots

stats: This is a DelayedMatrix object with columns representing various statistics for methyla-
tion loci along the genome.

parameters: Object of class list. A list of parameters representing how the t-statistics were
computed.

gr: Object of class GRanges giving genomic locations.

computeStat 17

Extends

Class hasGRanges, directly.

Methods

[The subsetting operator; one may only subset in one dimension, corresponding to methylation
loci.

show The show method.

Utilities

This class extends hasGRanges and therefore inherits a number of useful GRanges methods that op-
erate on the gr slot, used for accessing and setting the genomic locations and also do subsetByOverlaps.

Coercion

Package version 1.11.1 introduced a new version of representing ‘BSseqTstat’ objects. You can
update old serialized (saved) objects by invoking x <- updateObject(x).

Author(s)

Kasper Daniel Hansen <khansen@jhsph.edu>

See Also

The package vignette(s). hasGRanges for accessing the genomic locations. BSmooth.tstat for
a function that returns objects of class BSseqTstat, and dmrFinder for a function that computes
DMRs based on the t-statistics. Also see BS.cancer.ex.tstat for an example of the class in the
bsseqData package.

Examples

if(require(bsseqData)) {
data(BS.cancer.ex.tstat)
dmrFinder(BS.cancer.ex.tstat)

}

computeStat Compute a test statistic based on smoothed whole-genome bisulfite
sequencing data.

Description

Compute a test statistic based on smoothed whole-genome bisulfite sequencing data.

Usage

computeStat(BSseqStat, coef = NULL)

18 computeStat

Arguments

BSseqStat An object of class BSseqStat, typically an object returned by smoothSds(...)
and not constructed by the user.

coef A vector indicating for which coefficients the statistic is to be computed (coef
= NULL corresponds to testing all coefficients). If the length of the coef is 1 then
the corresponding t-statistic is computed, otherwise the corresponding F-statistic
is computed.

Details

TODO

Value

An object of class BSseqStat. More speciically, the input BSseqStat object with the computed
statistics added to the stats slot (accessible with getStats).

Author(s)

Kasper Daniel Hansen <khansen@jhsph.edu>

See Also

smoothSds for the function to create the appropriate BSseqStat input object. BSseqStat also
describes the return class. This function is likely to be followed by the use of dmrFinder.

Examples

if(require(bsseqData)) {
data(keepLoci.ex)
data(BS.cancer.ex.fit)
BS.cancer.ex.fit <- updateObject(BS.cancer.ex.fit)
Remember to subset the BSseq object, see vignette for explanation
TODO: Kind of a forced example
design <- model.matrix(~0 + BS.cancer.ex.fit$Type)
colnames(design) <- gsub("BS\\.cancer\\.ex\\.fit\\$Type", "",

colnames(design))
contrasts <- makeContrasts(

cancer_vs_normal = cancer - normal,
levels = design

)
BS.stat <- BSmooth.fstat(BS.cancer.ex.fit[keepLoci.ex,],

design,
contrasts)

BS.stat <- smoothSds(BS.stat)
BS.stat <- computeStat(BS.stat)
BS.stat

}

data.frame2GRanges 19

data.frame2GRanges Converts a data frame to a GRanges.

Description

Converting a data.frame to a GRanges object. The data.frame needs columns like chr, start and end
(strand is optional). Additional columns may be kept in the GRanges object.

Usage

data.frame2GRanges(df, keepColumns = FALSE, ignoreStrand = FALSE)

Arguments

df A data.frame with columns chr or seqnames, start, end and optionally a
strand column.

keepColumns In case df has additional columns, should these columns be stored as metadata
columns on the return GRanges or should they be discarded.

ignoreStrand In case df has a strand column, should this column be ignored.

Value

An object of class GRanges

Note

In case df has rownames, they will be used as names for the return object.

Author(s)

Kasper Daniel Hansen <khansen@jhsph.edu>

Examples

df <- data.frame(chr = "chr1", start = 1:3, end = 2:4,
strand = c("+","-","+"))

data.frame2GRanges(df, ignoreStrand = TRUE)

dmrFinder Finds differentially methylated regions for whole genome bisulfite se-
quencing data.

Description

Finds differentially methylated regions for whole genome bisulfite sequencing data. Essentially
identifies regions of the genome where all methylation loci have an associated t-statistic that is
beyond a (low, high) cutoff.

20 dmrFinder

Usage

dmrFinder(bstat, cutoff = NULL, qcutoff = c(0.025, 0.975),
maxGap=300, stat = "tstat.corrected", verbose = TRUE)

Arguments

bstat An object of class BSseqStat or BSseqTstat.

cutoff The cutoff of the t-statistics. This should be a vector of length two giving the
(low, high) cutoff. If NULL, see qcutoff.

qcutoff In case cutoff is NULL, compute the cutoff using these quantiles of the t-statistic.

maxGap If two methylation loci are separated by this distance, break a possible DMR.
This guarantees that the return DMRs have CpGs that are this distance from
each other.

stat Which statistic should be used?

verbose Should the function be verbose?

Details

The workhorse function is BSmooth.tstat which sets up a t-statistic for a comparison between two
groups.

Note that post-processing of these DMRs are likely to be necessary, filtering for example for length
(or number of loci).

Value

A data.frame with columns

start, end, width, chr
genomic locations and width.

n The number of methylation loci.

invdensity Average length per loci.

group1.mean The mean methylation level across samples and loci in ’group1’.

group2.mean The mean methylation level across samples and loci in ’group2’.

meanDiff The mean difference in methylation level; the difference between group1.mean
and group2.mean.

idxStart, idxEnd, cluster
Internal use.

areaStat The ’area’ of the t-statistic; equal to the sum of the t-statistics for the individual
methylation loci.

direction either ‘hyper’ or ‘hypo’.
areaStat.corrected

Only present if column = "tstat.corrected", contains the area of the cor-
rected t-statistics.

Author(s)

Kasper Daniel Hansen <khansen@jhsph.edu>.

estimateErrorRate 21

References

KD Hansen, B Langmead, and RA Irizarry. BSmooth: from whole genome bisulfite sequencing
reads to differentially methylated regions. Genome Biology (2012) 13:R83. doi:10.1186/gb-2012-
13-10-r83.

See Also

BSmooth.tstat for the function constructing the input object, and BSseqTstat for its class. In
the example below, we use BS.cancer.ex.tstat as the actual input object. Also see the package
vignette(s) for a detailed example.

Examples

if(require(bsseqData)) {
dmrs0 <- dmrFinder(BS.cancer.ex.tstat, cutoff = c(-4.6, 4.6), verbose = TRUE)
dmrs <- subset(dmrs0, abs(meanDiff) > 0.1 & n >= 3)

}

estimateErrorRate Estimate CpG-specific error rate from BSseq object.

Description

This function estimates the CpG-specific error rate from a single sample BSseq object generated
using read.bedMethyl.

Usage

estimateErrorRate(BSseq, minCov = 10, maxCov = 100, minRatio = 0.8, plotErrorProfile = FALSE)

Arguments

BSseq A single sample object of class BSseq.

minCov A non-negative integer specifying the minimum coverage required for CpG loci
to be considered.

maxCov A non-negative integer specifying the maximum coverage allowed for CpG loci
to be considered.

minRatio A numeric value between 0 and 1 specifying the minimum ratio of CpG sites to
non-CpG sites for a loci to be considered.

plotErrorProfile

A logical value indicating whether to plot the CpG to non-CpG ratio distribution
for the filtered sites.

Value

A numeric value representing the estimated CpG-specific error rate the BSseq object.

Author(s)

Søren Blikdal Hansen (soren.blikdal.hansen@sund.ku.dk)

http://www.dx.doi.org/10.1186/gb-2012-13-10-r83
http://www.dx.doi.org/10.1186/gb-2012-13-10-r83

22 findLoci

See Also

BSseq for the BSseq class, read.bedMethyl for details on reading data into a BSseq object.

Examples

Example input files
infiles <- c(system.file("extdata/HG002_nanopore_test.bedMethyl.gz",

package = "bsseq"),
system.file("extdata/HG002_pacbio_test.bedMethyl.gz",

package = "bsseq"))

Run the function to import data
bsseq <- read.bedMethyl(files = infiles,

colData = DataFrame(row.names = c("test_nanopore",
"test_pacbio")),

strandCollapse = TRUE,
verbose = TRUE)

Estimate error rate
estimateErrorRate(bsseq[, 1], plotErrorProfile = FALSE)

findLoci Find methylation loci in a genome

Description

This is a convenience function to find methylation loci, such as CpGs, in a reference genome. The
result is useful as the value of the loci argument for read.bismark().

Usage

findLoci(pattern,
subject,
include = seqlevels(subject),
strand = c("*", "+", "-"),
fixed = "subject",
resize = TRUE)

Arguments

pattern A string specifying the pattern to search for, e.g. "CG". Can contain IUPAC
ambiguity codes, e.g., "CH".

subject A string containing a file path to the genome sequence, in FASTA or 2bit format,
to be searched. Alternatively, a BSgenome or DNAStringSet object storing the
genome sequence to be searched.

include A character vector indicating the seqlevels of subject to be used.

strand A character scaler specifying the strand of subject to be used. If strand = "*",
then both the positive (strand = "+") and negative (strand = "-" strands will
be searched.) It is assumed that subject contains the sequence with respect to
the + strand.

findLoci 23

fixed If "subject" (the default), IUPAC ambiguity codes in the pattern only are in-
terpreted as wildcards, e.g., a pattern containing CH matches a subject con-
taining CA but not vice versa. See ?Biostrings::`lowlevel-matching` for
more information

resize A logical scalar specifying whether the ranges should be shifted to have width
1 and anchored by the start of the locus, e.g., resize a CpG dinucleotide to give
the co-ordinates of the cytosine.

Details

This function provides a convenience wrapper for finding methylation loci in a genome, based on
running vmatchPattern(). Users requiring finer-grained control should directly use the vmatchPattern()
function and coerce the result to a GRanges object.

Value

A GRanges object storing the found loci.

Author(s)

Peter F. Hickey

See Also

• Biostrings::vmatchPattern()

• ?BSgenome::`BSgenome-utils`

Examples

library(Biostrings)
Find CpG dinucleotides on the both strands of an artificial sequence
my_seq <- DNAStringSet("ATCAGTCGC")
names(my_seq) <- "test"
findLoci(pattern = "CG", subject = my_seq)
Find CHG trinucleotides on the both strands of an artificial sequence
findLoci(pattern = "CHG", subject = my_seq)

Find CpG dinucleotides on the + strand of chr17 from the human genome (hg38)
if (requireNamespace("BSgenome.Hsapiens.UCSC.hg38")) {

findLoci(
pattern = "CG",
subject = BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38,
include = "chr17",
strand = "+")

}

24 fisherTests

fisherTests Compute Fisher-tests for a BSseq object

Description

A function to compute Fisher-tests for an object of class BSseq.

Usage

fisherTests(BSseq, group1, group2, lookup = NULL,
returnLookup = TRUE, mc.cores = 1, verbose = TRUE)

Arguments

BSseq An object of class BSseq.

group1 A vector of sample names or indexes for the ‘treatment’ group.

group2 A vector of sample names or indexes for the ‘control’ group.

lookup A ‘lookup’ object, see details.

returnLookup Should a ‘lookup’ object be returned, see details.

mc.cores The number of cores used. Note that setting mc.cores to a value greater than 1
is not supported on MS Windows, see the help page for mclapply.

verbose Should the function be verbose.

Details

This function computes row-wise Fisher’s exact tests. It uses an internal lookup table so rows which
forms equivalent 2x2 tables are group together and only a single test is computed. If returnLookup
is TRUE the return object contains the lookup table which may be feed to another call to the function
using the lookup argument.

If group1, group2 designates more than 1 sample, the samples are added together before testing.

This function can use multiple cores on the same computer.

This test cannot model biological variability.

Value

if returnLookup is TRUE, a list with components results and lookup, otherwise just the results
component. The results (component) is a matrix with the same number of rows as the BSseq
argument and 2 columns p.value (the unadjusted p-values) and log2OR (log2 transformation of
the odds ratio).

Author(s)

Kasper Daniel Hansen <khansen@jhsph.edu>

See Also

fisher.test for information about Fisher’s test. mclapply for the mc.cores argument.

FWGRanges-class 25

Examples

M <- matrix(1:9, 3,3)
colnames(M) <- c("A1", "A2", "A3")
BStest <- BSseq(pos = 1:3, chr = c("chr1", "chr2", "chr1"),

M = M, Cov = M + 2)
results <- fisherTests(BStest, group1 = "A1", group2 = "A2",

returnLookup = TRUE)
results

#---
An example using a HDF5Array-backed BSseq object
#
library(HDF5Array)
See ?SummarizedExperiment::saveHDF5SummarizedExperiment for details
hdf5_BStest <- saveHDF5SummarizedExperiment(x = BStest,

dir = tempfile())
results <- fisherTests(hdf5_BStest,

group1 = "A1",
group2 = "A2",
returnLookup = TRUE)

results

FWGRanges-class Classes FWIRanges and FWGRanges

Description

Classes for fixed-width IRanges and GRanges, ie. objects where all ranges have the same width.
The intention is for these classes to be added to GenomicRanges. Documented here temporarily.

Details

See description. Otherwise works like IRanges and GRanges, except there are many unimplemented
methods.

This is really a private class, with private methods, but R’s NAMESPACE handling means they get
unintentionally exported. Hence this documentation.

Examples

showClass("FWIRanges")

getCoverage Obtain coverage for BSseq objects.

Description

Obtain coverage for BSseq objects.

26 getCoverage

Usage

getCoverage(BSseq, regions = NULL, type = c("Cov", "M"),
what = c("perBase", "perRegionAverage", "perRegionTotal"),
withDimnames = TRUE)

Arguments

BSseq An object of class BSseq.

regions An optional data.frame or GenomicRanges object specifying a number of ge-
nomic regions.

type This returns either coverage or the total evidence for methylation at the loci.

what The type of return object, see details.

withDimnames A logical(1), indicating whether dimnames should be applied to extracted
coverage elements. Setting withDimnames = FALSE increases the speed and
memory efficiency with which coverage is extracted.

Value

NOTE: The return type of getCoverage varies depending on its arguments.

If regions are not specified (regions = NULL) a DelayedMatrix object (what = "perBase") is
returned. This will either contain the per-base coverage, the average coverage, or the genome total
coverage (depending on value of what).

If what = "perBase" and regions are specified, a list is returned. Each element of the list is a
DelayedMatrix object corresponding to the genomic loci inside the region. It is conceptually the
same as splitting the coverage by region.

If what = "perRegionAverage" or what = "perRegionTotal" and regions are specified the re-
turn value is a DelayedMatrix object. Each row of the DelayedMatrix corresponds to a region
and contains either the average coverage or the total coverage in the region.

Author(s)

Kasper Daniel Hansen <khansen@jhsph.edu>.

See Also

BSseq for the BSseq class.

Examples

data(BS.chr22)
head(getCoverage(BS.chr22, type = "M"))
reg <- GRanges(seqnames = c("chr22", "chr22"),

ranges = IRanges(start = c(1, 2*10^7), end = c(2*10^7 +1, 4*10^7)))
getCoverage(BS.chr22, regions = reg, what = "perRegionAverage")

cList <- getCoverage(BS.chr22, regions = reg)
length(cList)
head(cList[[1]])

#---
An example using a HDF5Array-backed BSseq object
#

getCpGMatrix 27

library(HDF5Array)
See ?SummarizedExperiment::saveHDF5SummarizedExperiment for details
hdf5_BS.chr22 <- saveHDF5SummarizedExperiment(x = BS.chr22,

dir = tempfile())
head(getCoverage(hdf5_BS.chr22, type = "M"))
reg <- GRanges(seqnames = c("chr22", "chr22"),

ranges = IRanges(start = c(1, 2 * 10 ^ 7),
end = c(2 * 10 ^ 7 + 1, 4 * 10 ^ 7)))

getCoverage(hdf5_BS.chr22, regions = reg, what = "perRegionAverage")
hdf5_cList <- getCoverage(hdf5_BS.chr22, regions = reg)
length(hdf5_cList)
head(hdf5_cList[[1]])

getCpGMatrix Generate a matrix of the most likely CpG status for a multi-sample
BSseq object.

Description

This function generates a matrix of the most likely CpG status for all loci and samples in a BSseq
object. Each element of the matrix represents the most likely CpG status (0 for homozygous CpG, 1
for heterozygous CpG, and 2 for non-CpG or if allCpG = TRUE 0 for homozygous or heterozygous
CpG, and 2 for non-CpG) for a specific locus and sample.

Usage

getCpGMatrix(BSseq, e = NULL, allCpG = FALSE)

Arguments

BSseq An object of class BSseq.

e An optional numeric vector representing error rates for each sample. If NULL,
the error rate for each sample is estimated using estimateErrorRate.

allCpG A logical value indicating whether to classify loci as allCpG (i.e. combine
homozygous or heterozygous CpG) and non-CpG based on their likelihoods.
Should be the same for getCpGMatrix and getMaxLikelihoodMatrix

Value

A numeric matrix where each row represents a locus, and each column represents a sample, and the
values correspond to the CpG status (same order as the BSseq object in input).

Author(s)

Søren Blikdal Hansen (soren.blikdal.hansen@sund.ku.dk)

See Also

BSseq for the BSseq class, read.bedMethyl for details on reading data into a BSseq object, estimateErrorRate
for estimating the CpG-specific error rate. getCpGs for filtering a single-sample BSseg object.
getMaxLikelihoodMatrix for generating a matrix with the maximum scaled likelihoods matching
the CpGMatrix.

28 getCpGs

Examples

Example input files
infiles <- c(system.file("extdata/HG002_nanopore_test.bedMethyl.gz",

package = "bsseq"),
system.file("extdata/HG002_pacbio_test.bedMethyl.gz",

package = "bsseq"))

Run the function to import data
bsseq <- read.bedMethyl(files = infiles,

colData = DataFrame(row.names = c("test_nanopore",
"test_pacbio")),

strandCollapse = TRUE,
verbose = TRUE)

Single samples can be filtered using the getCpGs function
bsseq_nano <- bsseq[, 1]
bsseq_nano_99All_filtered <- bsseq[getCpGs(bsseq_nano,

type = "allCpG", threshold = 0.99)]

bsseq_pacbio <- bsseq[, 2]
bsseq_pacbio_99All_filtered <- bsseq[getCpGs(bsseq_pacbio,

type = "allCpG", threshold = 0.99)]

For filtering multiple samples, we can use a CpGMatrix and a MaxLikelihoodMatrix
Construct the CpGMatrix and getMaxLikelihoodMatrix for the bsseq object
CpGMatrix <- getCpGMatrix(bsseq, allCpG = TRUE)
MaxLikelihoodMatrix <- getMaxLikelihoodMatrix(bsseq, allCpG = TRUE)

Filter for allCpG loci with a likelihood > 0.99 in both samples
bsseq_combined_99All_filtered <- bsseq[which(rowAlls(CpGMatrix == 0)

& rowMins(MaxLikelihoodMatrix) > 0.99)]

getCpGs Get CpG (and non-CpG) loci from a single sample BSseq object.

Description

This function identifies CpG (and non-CpG) loci from a single sample BSseq object using scaled
likelihoods computed from the count of CpG sites and Non-CpG sites mapped to the loci, based on
the specified type, and minimum scaled likelihood (threshold). The function only work for BSseq
objects generated using read.bedMethyl.

Usage

getCpGs(BSseq, type = c("homozygous", "heterozygous", "allCpG", "nonCpG"), threshold = 0.99, e = NULL)

Arguments

BSseq An single sample object of class BSseq.

type A character string specifying the type of loci to extract. Must be one of "homozygous",
"heterozygous", "allCpG", or "nonCpG".

threshold A numeric value between 0 and 1 specifying the minimum likelihood threshold
required for loci to be included.

getMaxLikelihoodMatrix 29

e An optional numeric value representing the error rate. If NULL, the error rate is
estimated using estimateErrorRate.

Value

An integer vector of indices representing the loci that match the criteria.

Author(s)

Søren Blikdal Hansen (soren.blikdal.hansen@sund.ku.dk)

See Also

BSseq for the BSseq class, read.bedMethyl for details on reading data into a BSseq object, estimateErrorRate
for estimating the CpG-specific error rate.

Examples

Example input files
infiles <- c(system.file("extdata/HG002_nanopore_test.bedMethyl.gz",

package = "bsseq"),
system.file("extdata/HG002_pacbio_test.bedMethyl.gz",

package = "bsseq"))

Run the function to import data
bsseq <- read.bedMethyl(files = infiles,

colData = DataFrame(row.names = c("test_nanopore",
"test_pacbio")),

strandCollapse = TRUE,
verbose = TRUE)

Filter CpG sites for the Nanopore dataset
bsseq_nano <- bsseq[, 1]
bsseq_nano_99All_filtered <- bsseq[getCpGs(bsseq_nano,

type = "allCpG", threshold = 0.99)]

Filter CpG sites for the PacBio dataset
bsseq_pacbio <- bsseq[, 2]
bsseq_pacbio_99All_filtered <- bsseq[getCpGs(bsseq_pacbio,

type = "allCpG", threshold = 0.99)]

getMaxLikelihoodMatrix

Generate a matrix of the scaled likelihood of most likely CpG status
for a multi-sample BSseq object.

Description

This function generates a matrix of the scaled likelihoods for most likely CpG status for a multi-
sample BSseq object. Each element of the matrix represents the scaled likelihood of the most likely
CpG status for the locus in the sample. If no data is available for a locus in a sample, the entry in
the CpGMatrix is 2 (nonCpG) and the corresponding MaxLikelihood is 1/3.

30 getMaxLikelihoodMatrix

Usage

getMaxLikelihoodMatrix(BSseq, e = NULL, allCpG = FALSE)

Arguments

BSseq An object of class BSseq.

e An optional numeric vector representing error rates for each sample. If NULL,
the error rate for each sample is estimated using estimateErrorRate.

allCpG A logical value indicating whether to classify loci as allCpG and non-CpG loci
and sum the scaled likelihood of homozygous CpG and heterozygous CpG.
Should be the same for getMaxLikelihoodMatrix and getCpGMatrix

Value

A numeric matrix where each row represents a locus, each column represents a sample, and the
values correspond to the quality scores.

Author(s)

Søren Blikdal Hansen (soren.blikdal.hansen@sund.ku.dk)

See Also

BSseq for the BSseq class, read.bedMethyl for details on reading data into a BSseq object, estimateErrorRate
for estimating the CpG-specific error rate. getCpGs for filtering a single-sample BSseg object.
getCpGMatrix for generating a matrix with the most likely CpG status matching the getMaxLike-
lihoodMatrix.

Examples

Example input files
infiles <- c(system.file("extdata/HG002_nanopore_test.bedMethyl.gz",

package = "bsseq"),
system.file("extdata/HG002_pacbio_test.bedMethyl.gz",

package = "bsseq"))

Run the function to import data
bsseq <- read.bedMethyl(files = infiles,

colData = DataFrame(row.names = c("test_nanopore",
"test_pacbio")),

strandCollapse = TRUE,
verbose = TRUE)

Single samples can be filtered using the getCpGs function
bsseq_nano <- bsseq[, 1]
bsseq_nano_99All_filtered <- bsseq[getCpGs(bsseq_nano,

type = "allCpG", threshold = 0.99)]

bsseq_pacbio <- bsseq[, 2]
bsseq_pacbio_99All_filtered <- bsseq[getCpGs(bsseq_pacbio,

type = "allCpG", threshold = 0.99)]

For filtering multiple samples, we can use a CpGMatrix and a MaxLikelihoodMatrix
Construct the CpGMatrix and QualityMatrix for the bsseq object

getMeth 31

CpGMatrix <- getCpGMatrix(bsseq, allCpG = TRUE)
MaxLikelihoodMatrix <- getMaxLikelihoodMatrix(bsseq, allCpG = TRUE)

Filter for allCpG loci with a likelihood > 0.99 in both samples
bsseq_combined_99All_filtered <- bsseq[which(rowAlls(CpGMatrix == 0)

& rowMins(MaxLikelihoodMatrix) > 0.99)]

getMeth Obtain methylation estimates for BSseq objects.

Description

Obtain methylation estimates for BSseq objects, both smoothed and raw.

Usage

getMeth(BSseq, regions = NULL, type = c("smooth", "raw"),
what = c("perBase", "perRegion"), confint = FALSE, alpha = 0.95,
withDimnames = TRUE)

Arguments

BSseq An object of class BSseq.

regions An optional data.frame or GenomicRanges object specifying a number of ge-
nomic regions.

type This returns either smoothed or raw estimates of the methylation level.

what The type of return object, see details.

confint Should a confidence interval be return for the methylation estimates (see below).
This is only supported if what is equal to perBase.

alpha alpha value for the confidence interval.

withDimnames A logical(1), indicating whether dimnames should be applied to extracted
coverage elements. Setting withDimnames = FALSE increases the speed and
memory efficiency with which coverage is extracted.

Value

NOTE: The return type of getMeth varies depending on its arguments.

If region = NULL the what argument is ignored. This is also the only situation in which confint =
TRUE is supported. The return value is either a DelayedMatrix (confint = FALSE or a list with three
DelayedMatrix components confint = TRUE (meth, upper and lower), giving the methylation
estimates and (optionally) confidence intervals.

Confidence intervals for type = "smooth" is based on standard errors from the smoothing algorithm
(if present). Otherwise it is based on pointwise confidence intervals for binomial distributions
described in Agresti (see below), specifically the score confidence interval.

If regions are specified, what = "perBase" will make the function return a list, each element of the
list being a DelayedMatrix corresponding to a genomic region (and each row of the DelayedMatrix
being a loci inside the region). If what = "perRegion" the function returns a DelayedMatrix, with
each row corresponding to a region and containing the average methylation level in that region.

32 getStats

Note

A BSseq object needs to be smoothed by the function BSmooth in order to support type = "smooth".

Author(s)

Kasper Daniel Hansen <khansen@jhsph.edu>.

References

A Agresti and B Coull. Approximate Is Better than "Exact" for Interval Estimation of Binomial
Proportions. The American Statistician (1998) 52:119-126.

See Also

BSseq for the BSseq class and BSmooth for smoothing such an object.

Examples

data(BS.chr22)
head(getMeth(BS.chr22, type = "raw"))
reg <- GRanges(seqnames = c("chr22", "chr22"),

ranges = IRanges(start = c(1, 2*10^7), end = c(2*10^7 +1, 4*10^7)))
head(getMeth(BS.chr22, regions = reg, type = "raw", what = "perBase"))

#---
An example using a HDF5Array-backed BSseq object
#

library(HDF5Array)
See ?SummarizedExperiment::saveHDF5SummarizedExperiment for details
hdf5_BS.chr22 <- saveHDF5SummarizedExperiment(x = BS.chr22,

dir = tempfile())
head(getMeth(hdf5_BS.chr22, type = "raw"))
head(getMeth(hdf5_BS.chr22, regions = reg, type = "raw", what = "perBase"))

getStats Obtain statistics from a BSseqTstat object

Description

Essentially an accessor function for the statistics of a BSseqTstat object.

Usage

getStats(bstat, regions = NULL, ...)

Arguments

bstat An object of class BSseqStat or BSseqTstat.

regions An optional data.frame or GenomicRanges object specifying a number of ge-
nomic regions.

... Additional arguments passed to the different backends based on the class of
bstat; see Details.

GoodnessOfFit 33

Details

Additional argument when the bstat object is of class BSseqTstat:

stat Which statistics column should be obtained.

Value

An object of class data.frame possible restricted to the regions specified.

Author(s)

Kasper Daniel Hansen <khansen@jhsph.edu>

See Also

BSseqTstat for the BSseqTstat class, and getCoverage and getMeth for similar functions, oper-
ating on objects of class BSseq.

Examples

if(require(bsseqData)) {
data(BS.cancer.ex.tstat)
head(getStats(BS.cancer.ex.tstat))
reg <- GRanges(seqnames = c("chr22", "chr22"),

ranges = IRanges(start = c(1, 2*10^7), end = c(2*10^7 +1, 4*10^7)))
head(getStats(BS.cancer.ex.tstat, regions = reg))

}

GoodnessOfFit Binomial and poisson goodness of fit statistics for BSSeq objects

Description

Binomial and poisson goodness of fit statistics for BSSeq objects, including plotting capability.

Usage

poissonGoodnessOfFit(BSseq, nQuantiles = 10^5)
binomialGoodnessOfFit(BSseq, method = c("MLE"), nQuantiles = 10^5)
S3 method for class 'chisqGoodnessOfFit'
print(x, ...)
S3 method for class 'chisqGoodnessOfFit'
plot(x, type = c("chisq", "pvalue"), plotCol = TRUE, qqline = TRUE,
pch = 16, cex = 0.75, ...)

Arguments

BSseq An object of class BSseq.

x A chisqGoodnessOfFit object (as produced by poissonGoodnessOfFit or binomialGoodnessOfFit).

nQuantiles The number of (evenly-spaced) quantiles stored in the return object.

method How is the parameter estimated.

34 GoodnessOfFit

type Are the chisq or the p-values being plotted.

plotCol Should the extreme quantiles be colored.

qqline Add a qqline.

pch, cex Plotting symbols and size.

... Additional arguments being passed to qqplot (for plot) or ignored (for print).

Details

These functions compute and plot goodness of fit statistics for BSseq objects. For each methylation
loci, the Poisson goodness of fit statistic tests whether the coverage (at that loci) is independent and
identically Poisson distributed across the samples. In a similar fashion, the Binomial goodness of fit
statistic tests whether the number of reads supporting methylation are independent and identically
binomial distributed across samples (with different size parameters given by the coverage vector).

These functions do not handle NA values.

Value

The plotting method is invoked for its side effect. Both poissonGoodnessOfFit and binomialGoodnessOfFit
returns an object of class chisqGoodnessOfFit which is a list with components

chisq a vector of Chisq values.

quantiles a vector of quantiles (of the chisq values).

df degress of freedom

Author(s)

Kasper Daniel Hansen <khansen@jhsph.edu>

See Also

For the plotting method, see qqplot.

Examples

if(require(bsseqData)) {
data(BS.cancer.ex)
BS.cancer.ex <- updateObject(BS.cancer.ex)
gof <- poissonGoodnessOfFit(BS.cancer.ex)
plot(gof)

#---
An example using a HDF5Array-backed BSseq object
#

library(HDF5Array)

See ?SummarizedExperiment::saveHDF5SummarizedExperiment for details
hdf5_BS.cancer.ex <- saveHDF5SummarizedExperiment(x = BS.cancer.ex,

dir = tempfile())
hdf5_gof <- poissonGoodnessOfFit(hdf5_BS.cancer.ex)
plot(hdf5_gof)

}

hasGRanges-class 35

hasGRanges-class Class hasGRanges

Description

A class with a GRanges slot, used as a building block for other classes. Provides basic accessor
functions etc.

Objects from the Class

Objects can be created by calls of the form new("hasGRanges", ...).

Slots

gr: Object of class GRanges.

Methods

"[" Subsets a single dimension.

granges Get the GRanges object representing genomic locations.

start,start<-,end,end<-,width,width<- Start, end and width for the genomic locations of the ob-
ject, also replacement functions. This accessor functions operate directly on the gr slot.

strand,strand<- Getting and setting the strand of the genomic locations (the gr slot).

seqlengths,seqlengths<- Getting and setting the seqlengths of the genomic locations (the gr
slot).

seqlevels,seqlevels<- Getting and setting the seqlevels of the genomic locations (the gr slot).

seqnames,seqnames<- Getting and setting the seqnames of the genomic locations (the gr slot).

show The show method.

findOverlaps (query = "hasGRanges", subject = "hasGRanges"): finds overlaps between the
granges() of the two objects.

findOverlaps (query = "GenomicRanges", subject = "hasGRanges"): finds overlaps between
query and the granges() of the subject.

findOverlaps (query = "hasGRanges", subject = "GenomicRanges"): finds overlaps between
the granges() of the query and the subject.

subsetByOverlaps (query = "hasGRanges", subject = "hasGRanges"): Subset the query, keep-
ing the genomic locations that overlaps the subject.

subsetByOverlaps (query = "hasGRanges", subject = "GenomicRanges"): Subset the query,
keeping the genomic locations that overlaps the subject.

subsetByOverlaps (query = "GenomicRanges",subject = "hasGRanges"): Subset the query, keep-
ing the genomic locations that overlaps the subject.

Note

If you extend the hasGRanges class, you should consider writing a subset method ([), and a show
method. If the new class supports single index subsetting, the subsetByOverlaps methods will
automatically extend.

36 plotRegion

Author(s)

Kasper Daniel Hansen <khansen@jhsph.edu>

Examples

showClass("hasGRanges")

Internals Internals

Description

The matrixOrNULL class is a class union, representing a slot which is either a matrix or NULL
(representing missing information).

Value

Undocumented

plotRegion Plotting BSmooth methylation estimates

Description

Functions for plotting BSmooth methylation estimates. Typically used to display differentially
methylated regions.

Usage

plotRegion(BSseq, region = NULL, extend = 0, main = "",
addRegions = NULL, annoTrack = NULL, cex.anno = 1,
geneTrack = NULL, cex.gene = 1.5, col = NULL, lty = NULL,
lwd = NULL, BSseqStat = NULL, stat = "tstat.corrected",
stat.col = "black", stat.lwd = 1, stat.lty = 1, stat.ylim = c(-8, 8),
mainWithWidth = TRUE, regionCol = alpha("red", 0.1), addTicks = TRUE,
addPoints = FALSE, pointsMinCov = 5, highlightMain = FALSE)

plotManyRegions(BSseq, regions = NULL, extend = 0, main = "",
addRegions = NULL, annoTrack = NULL, cex.anno = 1,
geneTrack = NULL, cex.gene = 1.5, col = NULL, lty = NULL,
lwd = NULL, BSseqStat = NULL, stat = "tstat.corrected",
stat.col = "black", stat.lwd = 1, stat.lty = 1, stat.ylim = c(-8, 8),
mainWithWidth = TRUE, regionCol = alpha("red", 0.1), addTicks = TRUE,
addPoints = FALSE, pointsMinCov = 5, highlightMain = FALSE,
verbose = TRUE)

plotRegion 37

Arguments

BSseq An object of class BSseq.

region A data.frame (with start, end and chr columns) with 1 row or GRanges of
length 1. If region is NULL the entire BSseq argument is plotted.

regions A data.frame (with start, end and chr columns) or GRanges.

extend Describes how much the plotting region should be extended in either direction.
The total width of the plot is equal to the width of the region plus twice extend.

main The plot title. The default is to construct a title with information about which
genomic region is being plotted.

addRegions A set of additional regions to be highlighted on the plots. As the regions argu-
ment.

annoTrack A named list of GRanges objects. Each component is a track and the names of
the list are the track names. Each track will be plotted as solid bars, and we
routinely display information such as CpG islands, exons, etc.

cex.anno cex argument when plotting annoTrack.

geneTrack EXPERIMENTAL: A data.frame with columns: chr, start, end, gene_ID,
exon_number, strand, gene_name, isoforms. This interface is under active
development and subject to change.

cex.gene cex argument when plotting geneTrack.

col The color of the methylation estimates, see details.

lty The line type of the methylation estimates, see details.

lwd The line width of the methylation estimates, see details.

BSseqStat An object of class BSseqStat. If present, a new panel will be shown with the
t-statistics.

stat Which statistics will be plotted (only used is BSseqStat is not NULL.)

stat.col color for the statistics plot.

stat.lwd line width for the statistics plot.

stat.lty line type for the statistics plot.

stat.ylim y-limits for the statistics plot.

mainWithWidth Should the default title include information about width of the plot region.

regionCol The color used for highlighting the region.

addTicks Should tick marks showing the location of methylation loci, be added?

addPoints Should the individual unsmoothed methylation estimates be plotted. This usu-
ally leads to a very confusing plot, but may be useful for diagnostic purposes.

pointsMinCov The minimum coverage a methylation loci need in order for the raw methylation
estimates to be plotted. Useful for filtering out low coverage loci. Only used if
addPoints = TRUE.

highlightMain Should the plot region be highlighted?

verbose Should the function be verbose?

38 read.bedMethyl

Details

The correct choice of aspect ratio depends on the width of the plotting region. We tend to use width
= 10, height = 5.

plotManyRegions is used to plot many regions (hundreds or thousands), and is substantially quicker
than repeated calls to plotRegion.

This function has grown to be rather complicated over time. For custom plotting, it is sometimes
useful to use the function definition as a skeleton and directly modify the code.

Value

This function is invoked for its side effect: producing a plot.

Author(s)

Kasper Daniel Hansen <khansen@jhsph.edu>

See Also

The package vignette has an extended example.

read.bedMethyl Parsing bedMethyl output from modkit pileup.

Description

Parsing bedMethyl output from modkit pileup.

Usage

read.bedMethyl(files,
loci = NULL,
colData = NULL,
rmZeroCov = TRUE,
strandCollapse = TRUE,
BPPARAM = bpparam(),
BACKEND = NULL,
dir = tempfile("BSseq"),
replace = FALSE,
chunkdim = NULL,
level = NULL,
nThread = 1L,
verbose = getOption("verbose"))

Arguments

files The path to the files created by running modkit pileup, one sample per file. See
the methods section of [link to preprint] for validated output.

read.bedMethyl 39

loci NULL (default) or a GenomicRanges instance containing methylation loci (all
with width equal to 1). If loci = NULL, then read.bedMethyl() will perform
a first pass over the bedMethyl files to identify candidate loci. If loci is a
GenomicRanges instance, then these form the candidate loci. The candidate loci
will be collapsed if strandCollapse = TRUE.

colData An optional DataFrame describing the samples. Row names, if present, become
the column names of the BSseq object. If NULL, then a DataFrame will be cre-
ated with files used as the row names.

rmZeroCov A logical(1) indicating whether methylation loci that have zero coverage in
all samples should be removed. Default setting is rmZeroCov = TRUE

strandCollapse A logical(1) indicating whether strand-symmetric methylation loci (i.e. CpGs)
should be collapsed across strands.

BPPARAM An optional BiocParallelParam instance determining the parallel back-end to
be used during evaluation.

BACKEND NULL or a single string specifying the name of the realization backend. Currently,
the backend is not supported for downstream applications.

dir Only applicable if BACKEND == "HDF5Array". The path (as a single string) to
the directory where to save the HDF5-based BSseq object.

replace Only applicable if BACKEND == "HDF5Array". If the directory dir already ex-
ists, should it be replaced with a new one?

chunkdim Only applicable if BACKEND == "HDF5Array". The dimensions of the chunks to
use for writing the data to disk.

level The compression level to use for writing the data to disk.

nThread The number of threads used by fread when reading the files.

verbose A logical(1) indicating whether progress messages should be printed (default
TRUE).

File formats

The format of each file should be similar to the examples in [link to preprint]. Files ending in .gz,
.bz2, .xz, or .zip will be automatically decompressed to tempdir().

Supported file formats: Modkit bedMethyl files from modkit pileup. For downstream likelihood
functions we recommend running modkit pileup on output from bam files modification/basecalled
using a CG context model and not using a reference genome for pileup.

Unsupported file formats: Other types of output.

One-based vs. zero-based genomic co-ordinates: The genomic co-ordinates of bedMethyl
files are zero-based. Since Bioconductor packages typically use one-based co-ordinates, the co-
ordinates from the bedMethyl files are converted to one-based in the BSseq object.

Author(s)

Søren Blikdal Hansen (soren.blikdal.hansen@sund.ku.dk)

40 read.bismark

Examples

Example: Reading bedMethyl files included in the bsseq package
Paths to example bedMethyl files in the package's extdata directory
infiles <- c(system.file("extdata/HG002_nanopore_test.bedMethyl.gz",

package = "bsseq"),
system.file("extdata/HG002_pacbio_test.bedMethyl.gz",

package = "bsseq"))

Run the function to import data
bsseq <- read.bedMethyl(files = infiles,

colData = DataFrame(row.names = c("test_nanopore",
"test_pacbio")),

rmZeroCov = FALSE,
strandCollapse = TRUE,
verbose = TRUE)

View the resulting BSseq object
bsseq

read.bismark Parsing output from the Bismark alignment suite.

Description

Parsing output from the Bismark alignment suite.

Usage

read.bismark(files,
loci = NULL,
colData = NULL,
rmZeroCov = FALSE,
strandCollapse = TRUE,
BPPARAM = bpparam(),
BACKEND = NULL,
dir = tempfile("BSseq"),
replace = FALSE,
chunkdim = NULL,
level = NULL,
nThread = 1L,
verbose = getOption("verbose"))

Arguments

files The path to the files created by running Bismark’s methylation extractor, one
sample per file. Files ending in .gz or .bz2 will be automatically decompressed
to tempfile(). We strongly recommend you use the ’genome wide cytosine
report’ output files. See section ’File formats’ for further details.

loci NULL (default) or a GenomicRanges instance containing methylation loci (all
with width equal to 1). If loci = NULL, then read.bismark() will perform a
first pass over the Bismark file to identify candidate loci. If loci is a GenomicRanges
instance, then these form the candidate loci. In either case, the candidate loci

read.bismark 41

will be filtered if rmZeroCov = TRUE and collapsed if strandCollapse = TRUE
to form the final set of methylation loci that form the rowRanges of the returned
BSseq object. See section ’Efficient use of read.bismark()’ for further details.

colData An optional DataFrame describing the samples. Row names, if present, become
the column names of the BSseq object. If NULL, then a DataFrame will be cre-
ated with files used as the row names.

rmZeroCov A logical(1) indicating whether methylation loci that have zero coverage in
all samples be removed. For several reasons, the default rmZeroCov = FALSE is
recommended even in cases where you ultimately want to remove such loci. See
section ’Efficient use of read.bismark()’ for further details.

strandCollapse A logical(1) indicating whether strand-symmetric methylation loci (i.e. CpGs)
should be collapsed across strands. This is only applicable for stranded methy-
lation loci, e.g., loci extracted from ’genome wide cytosine reports’ (see section
’File formats’ for further details).

BPPARAM An optional BiocParallelParam instance determining the parallel back-end
to be used during evaluation. Currently supported are SerialParam (Unix,
Mac, Windows), MulticoreParam (Unix and Mac), SnowParam (Unix, Mac,
and Windows, limited to single-machine clusters), and BatchtoolsParam (Unix,
Mac, Windows, only with the in-memory realization backend). See sections
’Parallelization and progress monitoring’ and ’Realization backends’ for further
details.

BACKEND NULL or a single string specifying the name of the realization backend. When
the backend is set to NULL, the M and Cov assays are realized in memory as ordi-
nary matrices, otherwise these are realized with the given BACKEND. See section
’Realization backends’ for further details.

dir Only applicable if BACKEND == "HDF5Array". The path (as a single string) to
the directory where to save the HDF5-based BSseq object. The directory will be
created so should not already exist, unless replace is set to TRUE.

replace Only applicable if BACKEND == "HDF5Array". If directory dir already exists,
should it be replaced with a new one? The content of the existing directory will
be lost!

chunkdim Only applicable if BACKEND == "HDF5Array". The dimensions of the chunks to
use for writing the data to disk. By default, getHDF5DumpChunkDim() using the
dimensions of the returned BSseq object will be used. See ?getHDF5DumpChunkDim
for more information.

level Only applicable if BACKEND == "HDF5Array". The compression level to use for
writing the data to disk. By default, getHDF5DumpCompressionLevel() will be
used. See ?getHDF5DumpCompressionLevel for more information.

nThread The number of threads used by fread when reading the files. Be careful when
combining a parallel backend specified with BPPARAM with nThread > 1 because
each worker will use nThread.

verbose A logical(1) indicating whether progress messages should be printed (default
TRUE).

Value

A BSseq object.

42 read.bismark

File formats

The format of each file is automatically detected using the internal function bsseq:::.guessBismarkFileType().
Files ending in .gz, .bz2, .xz, or .zip will be automatically decompressed to tempdir().

Supported file formats: Bismark’s ’genome wide cytosine report’ (https://github.com/
FelixKrueger/Bismark/tree/master/Docs#the-genome-wide-cytosine-report-optional-is-tab-delimited-in-the-following-format-1-based-coords)
and ’coverage’ (https://github.com/FelixKrueger/Bismark/tree/master/Docs#the-coverage-output-looks-like-this-tab-delimited-1-based-genomic-coords)
formats are both supported. If setting loci = NULL, then we strongly recommend using the
’genome wide cytosine report’ output format because this includes strand information for each
locus. The ’coverage’ output does not contain strand information and so the strand of the re-
turned BSseq object will be set to * unless stranded loci are supplied.

Unsupported file formats: Neither the ’bedGraph’ output format (https://github.com/
FelixKrueger/Bismark/tree/master/Docs#the-bedgraph-output-optional-looks-like-this-tab-delimited-0-based-start-1-based-end-coords)
nor the ’bismark_methylation_extractor’ output format (https://github.com/FelixKrueger/
Bismark/tree/master/Docs#the-bismark_methylation_extractor-output-is-in-the-form-tab-delimited-1-based-coords)
are supported. The former does not include the required counts of methylated and unmethylated
reads hile the is an intermediate file containing read-level, rather than locus-level, data on methy-
lation.

One-based vs. zero-based genomic co-ordinates: The genomic co-ordinates of the Bismark
output files may be zero-based or one-based depending on whether the --zero_based argument
was used when running Bismark’s methylation extractor. Furthermore, the default co-ordinate
counting system varies by version of Bismark. bsseq makes no assumptions about the basis of
the genomic co-ordinates and it is left to the user to ensure that the appropriate basis is used in the
analysis of their data.
Since Bioconductor packages typically use one-based co-ordinates, we strongly recommend that
your Bismark files are also one-based.

Efficient use of read.bismark()

We recommend the following to achieve fast and efficient importing of Bismark files:

• Specify the set of methylation loci via the loci argument.

• Use Bismark files in the ’coverage’ output format.

• Leave rmZeroCov = FALSE.

• Use a BPPARAM with a moderate number of workers (cores).

• Use BACKEND = "HDF5Array".

• Use multiple threads per worker (i.e. nThread > 1).

Each point is discussed below.

Specifying loci: Specifying the set of methylation loci via the loci argument means that
read.bismark() does not need to first parse all files to identify the set of candidate loci. Pro-
vided that rmZeroCov = FALSE, this means that each file is only read once. This may be a consid-
erable saving when there are a large number of files.
If you are unsure whether the below-described shortcuts apply to your data, leave loci =
NULL and let read.bismark() identify the set of candidate loci from files.
You may wish to use the findLoci() function to find all methylation loci of interest in your
reference genome (e.g., all CpGs) and then pass the result via the loci argument.
Alternatively, if all files are ’genome wide cytosine reports’ for samples aligned to the same
reference genome, then all files contain the exact same set of methylation loci. In this case, you

https://github.com/FelixKrueger/Bismark/tree/master/Docs#the-genome-wide-cytosine-report-optional-is-tab-delimited-in-the-following-format-1-based-coords
https://github.com/FelixKrueger/Bismark/tree/master/Docs#the-genome-wide-cytosine-report-optional-is-tab-delimited-in-the-following-format-1-based-coords
https://github.com/FelixKrueger/Bismark/tree/master/Docs#the-coverage-output-looks-like-this-tab-delimited-1-based-genomic-coords
https://github.com/FelixKrueger/Bismark/tree/master/Docs#the-bedgraph-output-optional-looks-like-this-tab-delimited-0-based-start-1-based-end-coords
https://github.com/FelixKrueger/Bismark/tree/master/Docs#the-bedgraph-output-optional-looks-like-this-tab-delimited-0-based-start-1-based-end-coords
https://github.com/FelixKrueger/Bismark/tree/master/Docs#the-bismark_methylation_extractor-output-is-in-the-form-tab-delimited-1-based-coords
https://github.com/FelixKrueger/Bismark/tree/master/Docs#the-bismark_methylation_extractor-output-is-in-the-form-tab-delimited-1-based-coords

read.bismark 43

may wish to first construct loci using the internal function bsseq:::.readBismarkAsFWGRanges()
applied to a single file, e.g., loci = bsseq:::.readBismarkAsFWGRanges(files[1], rmZeroCov,
strandCollapse).

Using the ’coverage’ Bismark files: It will generally be faster to parse Bismark files in the ’cov-
erage’ output format than those in the ’genome wide cytosine report’ format This is because the
former only includes loci with non-zero coverage and so the file size is often considerably smaller,
particularly for shallowly sequenced samples (e.g., those from single-cell bisulfite sequencing).

Leaving rmZeroCov = FALSE: If you set rmZeroCov = TRUE, then read.bismark() must first
parse all the files to identify which loci have zero coverage in all samples and then filter these out
from the set of candidate loci. This will happen even if you supply loci with a GenomicRanges
of candidate loci.
Furthermore, any coverage-based filtering of methylation loci is best left until you have con-
structed your final BSseq object. In our experience, the final BSseq object is often the product
of combining multiple BSseq objects, each constructed with a separate call to read.bismark().
In such cases, it is premature to use rmZeroCov = TRUE when running each read.bismark();
regretably, combining these objects will often then lead to an inefficiently stored BSseq object.

Using a BPPARAM with a moderate number of workers (cores):
Each file can be processed on its own, so you can process in parallel as many files as you have
workers. However, if using the HDF5Array backend, then writing to the HDF5 file cannot be
performed in parallel and so becomes the bottleneck. Nonetheless, by using a moderate number
of workers (2 - 10), we can ensure there is processed data available to write to disk as soon as the
current write is completed.

Using BACKEND = "HDF5Array": By using the HDF5Array realization backend from HDF5Array,
we reduce the amount of data that is kept in-memory at any one time. Once each file is parsed,
the data are written to the HDF5 file and are no longer needed in-memory. When combined with
multiple workers (cores), this means that each file will only need to read and retain in-memory 1
sample’s worth of data at a time.
Conversely, if you opt for all data to be in-memory (via BACKEND = NULL), then each worker will
pass each file’s data back to the main process and memory usage will steadily accumulate to often
unreasonable levels.

Using nThread > 1: read.bismark uses data.table::fread to read each file, which supports
threaded-parallisation. Depending on the system, increasing nThread can achieve near-linear
speed-ups in the number of threads for reading each file. Care needs to be taken when nThread >
1 is used in conjunction with a parallel backend via BPPARAM to ensure the system isn’t overloaded.
For example, using BPPARAM = MulticoreParam(workers = 10) with nThread = 4 may use up to
40 workers simultaneously.

Realization backends

The read.bismark() function creates a BSseq object with two assays, M and Cov. The choice of
realization backend controls whether these assays are stored in-memory as an ordinary matrix or on-
disk as a HDF5Array, for example. The choice of realization backend is controlled by the BACKEND
argument, which defaults to the current value of DelayedArray::getAutoRealizationBackend().

read.bismark() supports the following realization backends:

• NULL (in-memory): This stores each new assay in-memory using an ordinary matrix.

• HDF5Array (on-disk): This stores each new assay on-disk in a HDF5 file using an HDF5Matrix
from HDF5Array.

44 read.bismark

Please note that certain combinations of realization backend and parallelization backend are cur-
rently not supported. For example, the HDF5Array realization backend is currently only compatible
when used with a single-machine parallelization backend (i.e. it is not compatible with a SnowParam
that specifies an ad hoc cluster of multiple machines). BSmooth() will issue an error when given
such incompatible realization and parallelization backends.

Additional arguments related to the realization backend can be passed via the ... argument. These
arguments must be named and are passed to the relevant RealizationSink constructor. For exam-
ple, the ... argument can be used to specify the path to the HDF5 file to be used by BSmooth().
Please see the examples at the bottom of the page.

Parallelization, progress monitoring, and logging

read.bismark() now uses the BiocParallel package to implement parallelization. This brings
some notable improvements:

• Imported files can now be written directly to an on-disk realization backend by the worker.
This dramatically reduces memory usage compared to previous versions of bsseq that required
all results be retained in-memory.

• Parallelization is now supported on Windows through the use of a SnowParam object as the
value of BPPARAM.

• Detailed and extensive job logging facilities.

All parallelization options are controlled via the BPPARAM argument. In general, we recommend that
users combine multicore (single-machine) parallelization with an on-disk realization backend (see
section, ’Realization backend’). For Unix and Mac users, this means using a MulticoreParam. For
Windows users, this means using a single-machine SnowParam. Please consult the BiocParallel
documentation to take full advantage of the more advanced features.

A useful feature of BiocParallel are progress bars to monitor the status of long-running jobs, such as
BSmooth(). Progress bars are controlled via the progressbar argument in the BiocParallelParam
constructor.

BiocParallel also supports extensive and detailed logging facilities. Please consult the BiocParallel
documentation to take full advantage these advanced features.

Author(s)

Peter Hickey <peter.hickey@gmail.com>

See Also

• collapseBSseq() for collapsing (aggregating) data from sample’s with multiple Bismark
methylation extractor files (e.g., technical replicates).

Examples

Run read.bismark() on a single sample to construct a matrix-backed BSseq
object.
infile <- system.file("extdata/test_data.fastq_bismark.bismark.cov.gz",

package = "bsseq")
bsseq <- read.bismark(files = infile,

colData = DataFrame(row.names = "test_data"),
rmZeroCov = FALSE,
strandCollapse = FALSE,
verbose = TRUE)

read.modbam2bed 45

This is a matrix-backed BSseq object.
sapply(assays(bsseq, withDimnames = FALSE), class)
bsseq

Not run:
Run read.bismark() on a single sample to construct a HDF5Array-backed BSseq
object (with data written to 'test_dir')
test_dir <- tempfile("BSseq")
bsseq <- read.bismark(files = infile,

colData = DataFrame(row.names = "test_data"),
rmZeroCov = FALSE,
strandCollapse = FALSE,
BACKEND = "HDF5Array",
dir = test_dir,
verbose = TRUE)

This is a HDF5Array-backed BSseq object.
sapply(assays(bsseq, withDimnames = FALSE), class)
The 'M' and 'Cov' assays are in the HDF5 file 'assays.h5' (in 'test_dir').
sapply(assays(bsseq, withDimnames = FALSE), path)

End(Not run)

read.modbam2bed Construct BSseq objects from nanopore BED files

Description

Construct BSseq objects from nanopore BED files

Usage

read.modbam2bed(
files,
colData = NULL,
rmZeroCov = FALSE,
strandCollapse = TRUE

)

Arguments

files vector, BED files
colData data frame, phenotypic data with samples as rows and variables as columns
rmZeroCov A logical (1) indicating whether methylation loci that have zero coverage in all

samples be removed
strandCollapse A logical (1) indicating whether stand-symmetric methylation loci (i.e. CpGs)

should be collapsed across strands

Details

This function is deprecated in favor of ‘read.bedMethyl()‘.

This function reads in nanopore sequencing modified BED files to Bsseq objects. Nanopore se-
quencing data (i.e. aggregated modified base counts) is stored in modified-base BAM files. These
modified-base BAM files are converted to bedMethyl (BED) files using modbam2bed.

https://github.com/epi2me-labs/modbam2bed

46 read.modkit

Details for using modbam2bed: After installing modbam2bed, a conda environment is acti-
vated. Index files for BAM files are created using samtools index. The code requires aligned
reads with the Mm and Ml tags (MM and ML also supported), and the reference sequence used
for alignment (<reference.fasta>).

• -e, -- extended to output canonical, modified, and filtered bases;
• -m, -- mod_base=BASE to output modified base of interest, one of: 5mC, 5hmC, 5fC, 5caC,

5hmU, 5fU, 5caU, 6mA, 5oxoG, Xao. (Or modA, modC, modG, modT, modU, modN for
generic modified base);

• -r, --region=chr:start-end to output chromosome or genomic region of interest;
• -f, --threshold=THRESHOLD to output filtered bases for probability lower than threshold

(default = 0.66)

modbam2bed to Bsseq object: After creating BED files using modbam2bed, the BED files are
read in and the Bsseq object is constructed via read.modbam2bed() function. The function reads
in BED files, extract genomic regions, methylation, coverage, ambiguous modification status data
and sample information and then construct Bsseq object using BSseq function within the package.

Value

BSseq object

Examples

files <- c(system.file("extdata/modbam2bed/ctr1.chr10.chr11.bed.gz", package = "bsseq"),
system.file("extdata/modbam2bed/ctr2.chr10.chr11.bed.gz", package = "bsseq"),
system.file("extdata/modbam2bed/ctr3.chr10.chr11.bed.gz", package = "bsseq"),
system.file("extdata/modbam2bed/tret1.chr10.chr11.bed.gz", package = "bsseq"),
system.file("extdata/modbam2bed/tret2.chr10.chr11.bed.gz", package = "bsseq"),
system.file("extdata/modbam2bed/tret3.chr10.chr11.bed.gz", package = "bsseq"))

pd <- data.frame(condition = rep(c("control", "treatment"), each = 3),
replicate = rep(c("rep1", "rep2", "rep3"), times = 2))

bsseq_nano <- bsseq::read.modbam2bed(files,colData=pd,rmZeroCov = FALSE,
strandCollapse=TRUE)

read.modkit Construct BSseq objects from nanopore BED files

Description

Construct BSseq objects from nanopore BED files

Usage

read.modkit(
files,
colData = NULL,
rmZeroCov = FALSE,
strandCollapse = TRUE

)

smoothSds 47

Arguments

files vector, BED files

colData data frame, phenotypic data with samples as rows and variables as columns

rmZeroCov A logical (1) indicating whether methylation loci that have zero coverage in all
samples be removed

strandCollapse A logical (1) indicating whether stand-symmetric methylation loci (i.e. CpGs)
should be collapsed across strands

Details

This function is deprecated in favor of ‘read.bedMethyl()‘.

This function reads in nanopore sequencing modified BED files to Bsseq objects. Nanopore se-
quencing data (i.e. aggregated modified base counts) is stored in modified-base BAM files. These
modified-base BAM files are converted to bedMethyl (BED) files using modkit.

Details for modkit: Modkit outputs modified reads, unmodified reads, ambiguous modification
reads (reads where the probability was below the threshold and usually failing the lowest 10th
percentile), and other modified reads.

modkit to Bsseq object: After creating BED files using modkit, the BED files are read in and
the Bsseq object is constructed via read.modkit() function. The function reads in BED files,
extract genomic regions, methylation, coverage, ambiguous modification status data and sample
information and then construct Bsseq object using BSseq function within the package. Other
modification bases such as hydroxymethylation are extracted and added to the methylation matrix
when present.

Value

BSseq objects

Examples

No other modification present
files <- c(system.file("extdata/modkit/chr21.chr22.HG002.top1000.bed.gz", package = "bsseq"))
bsseq_nano <- read.modkit(files, rmZeroCov = FALSE, strandCollapse=FALSE)

Other modification present
files <- c(system.file("extdata/modkit/Hypo1.first50Bed.txt",package = "bsseq"))
bsseq_nano <- read.modkit(files, rmZeroCov = FALSE, strandCollapse=FALSE)

smoothSds Smooth the standard deviations using a thresholded running mean
based on smoothed whole-genome bisulfite sequencing data.

Description

Smooth the standard deviations using a thresholded running mean based on smoothed whole-
genome bisulfite sequencing data.

https://github.com/nanoporetech/modkit

48 smoothSds

Usage

smoothSds(BSseqStat, k = 101, qSd = 0.75, mc.cores = 1, maxGap = 10^8,
verbose = TRUE)

Arguments

BSseqStat An object of class BSseqStat, typically an object returned by BSmooth.fstat(...)
and not constructed by the user.

k A positive scalar, see details.

qSd A scalar between 0 and 1, see details.

mc.cores The number of cores used. Note that setting mc.cores to a value greater than 1
is not supported on MS Windows, see the help page for mclapply.

maxGap A scalar greater than 0, see details.

verbose Should the function be verbose?

Details

The standard deviation estimates are smoothed using a running mean with a width of k and thresh-
olded using qSd which sets the minimum standard deviation to be the qSd-quantile.

Value

An object of class BSseqStat. More speciically, the input BSseqStat object with the computed
statistics added to the stats slot (accessible with getStats).

Author(s)

Kasper Daniel Hansen <khansen@jhsph.edu>

See Also

BSmooth.fstat for the function to create the appropriate BSseqStat input object. BSseqStat also
describes the return class. This function is likely to be followed by the use of computeStat.

Examples

if(require(bsseqData)) {
library(limma) required for makeContrasts()
library(limma)
data(keepLoci.ex)
data(BS.cancer.ex.fit)
BS.cancer.ex.fit <- updateObject(BS.cancer.ex.fit)
Remember to subset the BSseq object, see vignette for explanation
TODO: Kind of a forced example
design <- model.matrix(~0 + BS.cancer.ex.fit$Type)
colnames(design) <- gsub("BS\\.cancer\\.ex\\.fit\\$Type", "",

colnames(design))
contrasts <- makeContrasts(

cancer_vs_normal = cancer - normal,
levels = design

)
BS.stat <- BSmooth.fstat(BS.cancer.ex.fit[keepLoci.ex,],

design,

smoothSds 49

contrasts)
BS.stat <- smoothSds(BS.stat)
Comparing the raw standard deviations to the smoothed standard
deviations
summary(getStats(BS.stat, what = "rawSds"))
summary(getStats(BS.stat, what = "smoothSds"))

}

Index

∗ classes
BSseq-class, 12
BSseqStat-class, 15
BSseqTstat-class, 16
FWGRanges-class, 25
hasGRanges-class, 35

∗ datasets
BS.chr22, 3

∗ internal
BSmooth.fstat, 7
computeStat, 17
Internals, 36
smoothSds, 47

[,BSseq-method (BSseq-class), 12
[,BSseqStat,ANY,ANY,ANY-method

(BSseqStat-class), 15
[,BSseqStat-method (BSseqStat-class), 15
[,BSseqTstat,ANY,ANY,ANY-method

(BSseqTstat-class), 16
[,BSseqTstat-method (BSseqTstat-class),

16
[,hasGRanges,ANY,ANY,ANY-method

(hasGRanges-class), 35
[,hasGRanges-method (hasGRanges-class),

35

assayNames,BSseq-method (BSseq-class),
12

assays,BSseq-method (BSseq-class), 12

BatchtoolsParam, 4, 41
binomialGoodnessOfFit (GoodnessOfFit),

33
BiocParallelParam, 4, 6, 39, 41, 44
BS.cancer.ex.tstat, 17, 21
BS.chr22, 3
BSgenome, 22
BSmooth, 4, 7, 9, 14, 32
BSmooth.fstat, 7, 16, 48
BSmooth.tstat, 8, 17, 21
BSseq, 4–7, 9, 10, 11, 13, 14, 22, 26, 27, 29,

30, 32, 39, 41–43
BSseq-class, 12
bsseq-deprecated, 14

BSseqStat, 7, 18, 48
BSseqStat (BSseqStat-class), 15
BSseqStat-class, 15
BSseqTstat, 9, 16, 21, 33
BSseqTstat (BSseqTstat-class), 16
BSseqTstat-class, 16

chisqGoodnessOfFit (GoodnessOfFit), 33
chrSelectBSseq (BSseq-class), 12
class:hasGRanges (hasGRanges-class), 35
collapseBSseq, 44
collapseBSseq (BSseq-class), 12
combine,BSseq,BSseq-method

(BSseq-class), 12
combineList (BSseq-class), 12
computeStat, 7, 16, 17, 48

data.frame2GRanges, 19
DataFrame, 10, 39, 41
DelayedMatrix, 11, 15, 16, 26, 31
dimnames,arrayRealizationSink-method

(FWGRanges-class), 25
dmrFinder, 7, 9, 16–18, 19
DNAStringSet, 22

end,FWGRanges-method (FWGRanges-class),
25

end,FWIRanges-method (FWGRanges-class),
25

end,hasGRanges-method
(hasGRanges-class), 35

end<-,FWIRanges-method
(FWGRanges-class), 25

end<-,hasGRanges-method
(hasGRanges-class), 35

estimateErrorRate, 21, 27, 29, 30

findLoci, 22, 42
findOverlaps,FWGRanges,FWGRanges-method

(FWGRanges-class), 25
findOverlaps,GenomicRanges,hasGRanges-method

(hasGRanges-class), 35
findOverlaps,hasGRanges,GenomicRanges-method

(hasGRanges-class), 35

50

INDEX 51

findOverlaps,hasGRanges,hasGRanges-method
(hasGRanges-class), 35

fisher.test, 24
fisherTests, 24
fread, 39, 41, 43
FWGRanges-class, 25
FWIRanges-class (FWGRanges-class), 25

GenomicRanges, 39, 40, 43
getAutoRealizationBackend, 5, 43
getBSseq, 14
getBSseq (BSseq-class), 12
getCoverage, 14, 25, 33
getCpGMatrix, 27, 30
getCpGs, 27, 28, 30
getHDF5DumpChunkDim, 4, 41
getHDF5DumpCompressionLevel, 4, 41
getMaxLikelihoodMatrix, 27, 29
getMeth, 14, 31, 33
getStats, 18, 32, 48
GoodnessOfFit, 33
GRanges, 10, 23
granges,hasGRanges-method

(hasGRanges-class), 35

hasBeenSmoothed (BSseq-class), 12
hasGRanges, 15–17
hasGRanges (hasGRanges-class), 35
hasGRanges-class, 35
HDF5Array, 5, 43, 44
HDF5Matrix, 5, 11, 15, 16, 43

Internals, 36

length,BSseq-method (BSseq-class), 12
length,hasGRanges-method

(hasGRanges-class), 35
locfit, 6

matrix, 5, 11, 13, 15, 16, 43
matrixOrNULL-class (Internals), 36
mclapply, 24
MulticoreParam, 4, 5, 41, 44

names,FWIRanges-method
(FWGRanges-class), 25

names<-,FWIRanges-method
(FWGRanges-class), 25

orderBSseq (BSseq-class), 12
overlapsAny,GenomicRanges,hasGRanges-method

(hasGRanges-class), 35
overlapsAny,hasGRanges,GenomicRanges-method

(hasGRanges-class), 35

overlapsAny,hasGRanges,hasGRanges-method
(hasGRanges-class), 35

pData,BSseq-method (BSseq-class), 12
pData<-,BSseq,data.frame-method

(BSseq-class), 12
pData<-,BSseq,DataFrame-method

(BSseq-class), 12
plot.chisqGoodnessOfFit

(GoodnessOfFit), 33
plotManyRegions (plotRegion), 36
plotRegion, 36
poissonGoodnessOfFit (GoodnessOfFit), 33
print.chisqGoodnessOfFit

(GoodnessOfFit), 33

RangedSummarizedExperiment, 12–14
read.bedMethyl, 14, 22, 27, 29, 30, 38
read.bismark, 22, 40
read.modbam2bed, 45
read.modkit, 46
RealizationSink, 5, 44
rowRanges, 41

sampleNames,BSseq-method (BSseq-class),
12

sampleNames<-,BSseq,ANY-method
(BSseq-class), 12

seqlengths,hasGRanges-method
(hasGRanges-class), 35

seqlengths<-,hasGRanges-method
(hasGRanges-class), 35

seqlevels,hasGRanges-method
(hasGRanges-class), 35

seqlevels<-,hasGRanges-method
(hasGRanges-class), 35

seqnames,FWGRanges-method
(FWGRanges-class), 25

seqnames,hasGRanges-method
(hasGRanges-class), 35

seqnames<-,hasGRanges-method
(hasGRanges-class), 35

SerialParam, 4, 41
setAutoRealizationBackend, 13
show,BSseq-method (BSseq-class), 12
show,BSseqStat-method

(BSseqStat-class), 15
show,BSseqTstat-method

(BSseqTstat-class), 16
smoothSds, 7, 16, 18, 47
SnowParam, 4, 5, 41, 44
start,FWGRanges-method

(FWGRanges-class), 25

52 INDEX

start,FWIRanges-method
(FWGRanges-class), 25

start,hasGRanges-method
(hasGRanges-class), 35

start<-,FWIRanges-method
(FWGRanges-class), 25

start<-,hasGRanges-method
(hasGRanges-class), 35

strand, 42
strand,FWGRanges-method

(FWGRanges-class), 25
strand,hasGRanges-method

(hasGRanges-class), 35
strand<-,hasGRanges,ANY-method

(hasGRanges-class), 35
strand<-,hasGRanges-method

(hasGRanges-class), 35
strandCollapse (BSseq-class), 12
subsetByOverlaps,GenomicRanges,hasGRanges-method

(hasGRanges-class), 35
subsetByOverlaps,hasGRanges,GenomicRanges-method

(hasGRanges-class), 35
subsetByOverlaps,hasGRanges,hasGRanges-method

(hasGRanges-class), 35

tempdir, 39, 42
tempfile, 40

updateObject,BSseq-method
(BSseq-class), 12

updateObject,BSseqStat-method
(BSseqStat-class), 15

updateObject,BSseqTstat-method
(BSseqTstat-class), 16

vmatchPattern, 23

width,FWGRanges-method
(FWGRanges-class), 25

width,FWIRanges-method
(FWGRanges-class), 25

width,hasGRanges-method
(hasGRanges-class), 35

width<-,FWIRanges-method
(FWGRanges-class), 25

width<-,hasGRanges-method
(hasGRanges-class), 35

	BS.chr22
	BSmooth
	BSmooth.fstat
	BSmooth.tstat
	BSseq
	BSseq-class
	bsseq-deprecated
	BSseqStat-class
	BSseqTstat-class
	computeStat
	data.frame2GRanges
	dmrFinder
	estimateErrorRate
	findLoci
	fisherTests
	FWGRanges-class
	getCoverage
	getCpGMatrix
	getCpGs
	getMaxLikelihoodMatrix
	getMeth
	getStats
	GoodnessOfFit
	hasGRanges-class
	Internals
	plotRegion
	read.bedMethyl
	read.bismark
	read.modbam2bed
	read.modkit
	smoothSds
	Index

